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The Problem…and Solutions

• Different chunks of code perform differently

• Single-threaded (synchronous) programming locks up 
processes and threads

• Multi-threading streamlines performance
• Runnables and Callables

• Imperative programming

• Cannot apply back-pressure

• Event-driven code is similar but:
• Can be reactive

• Can apply back-pressure

• Is harder to read
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LotusScript

• Linear

• Full-stack

• Modal
• Client locks on Prompt()

• NotesAgent.runOnServer
• Redirects to server thread

• Client locks while agent runs

• Linear progress through server 
agent

• Redirects back to calling function 
and continues
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XPages

• Single-threaded

• Linear

• NotesAgent.run()
• Redirects to LotusScript

• XPages waits

• Linear progress through server agent

• Redirects back to SSJS / Java
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How to Improve Performance?

• But this is all synchronous code

• To improve performance we must:
• Use profiling to identify performance

• Choose better-performing APIs

• ViewNavigators

• ViewCollection.getFirstEntry() == null instead of 
ViewCollection.count()

• DQL instead of db.search()

• Or progress to asynchronous code…
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Asynchronous in Domino

• Not possible in Formula Language

• Not possible in SSJS

• Agent.RunInBackgroundThread in LotusScript
• But like a Java Runnable, no UI interaction

• “Threads and Jobs” project on OpenNTF

• XOTS
• Runnables and Callables

• Imperative programming
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https://openntf.org/main.nsf/project.xsp?r=project/Threads%20and%20Jobs
https://wiki.openntf.org/display/ODA/XOTS


Xots.getService().submit()
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The Problems

• Responsible for submitting Future / Promise

• ExecutorService responsible for taking tasks off the queue

• get() method blocks while awaiting response(s) 

• Then code continues

• Gets messy when nested
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Asynchronous in JavaScript

• First came callbacks…and “callback hell”

• Promises made popular by jQuery Deferred Objects
• Accepted into ECMAScript 2015 spec

• Nested / chained promises gets hard to read (as we’ll see)

• Async / await introduced in NodeJS 7.6
• Part of ECMAScript 2017 spec

• Built on Promises

• Async function = function that returns a Promise

• await expects a Promise and unwraps it

• Code looks synchronous, but runs asynchronous
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Promise
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Async / Await
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What is Vert.x?

• Polyglot toolkit framework
• Java, JS, Groovy, Ruby, Scala, 

Kotlin

• Modular and Lightweight
• Vert.x core is 650kB

• Fast

• Flexible for everything from HTTP/REST microservices to 
sophisticated web applications

• Integrated into other frameworks, like Quarkus

14#engageug

https://www.techempower.com/benchmarks/#section=data-r17&hw=ph&test=db
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Vert.x is Event Driven

• Vert.x is event driven and non blocking

• Vert.x is multi-threaded (like Domino but not like Node.JS)

• Means lots of concurrency with few threads

• Uses Event Loop with multiple threads (Multi-Reactor)
• Number of threads depends on CPU

• Blocking code offloaded to worker threads
• 20 threads by default

• Verticles are actors on threads
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The Event Bus

• Communication between verticles via Event Bus

• One Event Bus per Vert.x instance

• Can be clustered across Vert.x instances

• Can allow JavaScript and Java verticles to communicate 
with one another

• Supports different messaging options:
• Publish/Subscribe

• Point-to-point messaging

• Request-response messaging
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The Event Bus

• Messages sent to an address, e.g. 
“keep.request.fetchviews”

• Handlers are registered to listen for an address

• Messages can be:
• Strings

• Buffers

• JsonObjects (in-built JSON support built on Jackson)

• Any other object for which a codec is registered

• Message codecs have a name and define the class

18#engageug



Event Bus
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Domino’s “Distributed Message Bus”

• Messages = email

• Sends message to an address

• Mail-in database receives email

• “After mail arrives” agent processes message

• However, no in-built communication back
• You could have a mail-in database at the other end as well

• “After mail arrives” finally sends email back
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HTTP “Message Bus”

• Browser sends request

• Request has an address (URI)

• Sends a message (body + headers)

• Subscribes for response

• Receives response from server and processes it
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So What?



ReactiveX

• Reactive eXtensions

• Asynchronous programming with observable streams

• Polyglot – RxJava, RxJS, RxGroovy, RxCpp, RxPY, 
RxSwift, RxScala

• RxJava 2 is latest Java version

• Combines Observer pattern, Iterator pattern and functional 
programming
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Project Reactor

• Spring uses Project Reactor
• Java 8+

• Doesn’t have to support Android

• Directly interacts with Java functional API, Completable Future, 
Streams

• Based on joint reactive research effort also implemented by RxJava 2

• Started as Rx lite but now almost the same
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Spring
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What Does It Mean?
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• Send request

• Request acknowledged

• Publish data

• Publish more data

• Complete



Give Us The Stats!
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REST Method Worst Best Average

XAgent View AllEntries 1.971 secs 1.519 secs 1.6582 secs

XAgent ViewNavigator 1.562 secs 1.397 secs 1.4598 secs

LS Agent View All Entries 1.557 secs 1.325 secs 1.424 secs

LS Agent ViewNavigator 1.14 secs 1.274 secs 1.1908 secs

Project Keep API 0.641 secs 0.537 secs 0.6068 secs



Advantages

• Calling code can start work quicker

• Can perform additional processes
• Merge

• Order

• Filter

• Count
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RxMarbles
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What XPages / LS -> Postman Does
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What Keep -> Postman Does
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Thank You and Useful Links

• ReactiveX - various languages 

• RxJS Marbles - interactive reactive diagrams

• Going Reactive with Eclipse Vert.x and RxJava

• Vert.x and Reactive

• Reactive programming in Redux

• Development of Reactive Applications with Quarkus – Niklas
Heidloff

• Domino and Synchronous / Asynchronous Processing

• A Streaming Pattern for the Vert.x Event Bus

• Project Reactor
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http://reactivex.io/
https://rxmarbles.com/
https://blogs.oracle.com/javamagazine/going-reactive-with-eclipse-vertx-and-rxjava
https://vertx.io/docs/#reactive
https://www.freecodecamp.org/news/an-introduction-to-functional-reactive-programming-in-redux-b0c14d097836/
http://heidloff.net/article-development-reactive-applications-quarkus/
https://www.intec.co.uk/what-domino-makes-trivial-number-two-synchronous-asynchronous-processing/
https://wissel.net/blog/2019/12/a-streaming-pattern-for-the-vert.x-eventbus.html
https://projectreactor.io/


Why No Comparison to App Dev Pack
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