
Driven by Events

Stephan Wissel, HCL Labs

Paul Withers, HCL Labs

1#engageug



Stephan Wissel

• NotesSensei

• Not a champion

• Not a master

• Manila / Singapore

2#engageug



Paul Withers

• Technical Architect, HCL Labs

• Lifetime IBM Champion

• Former HCL Grandmaster

• OpenNTF Board Member

3#engageug



The Problem…and Solutions

• Different chunks of code perform differently

• Single-threaded (synchronous) programming locks up 
processes and threads

• Multi-threading streamlines performance
• Runnables and Callables

• Imperative programming

• Cannot apply back-pressure

• Event-driven code is similar but:
• Can be reactive

• Can apply back-pressure

• Is harder to read

4#engageug



LotusScript

• Linear

• Full-stack

• Modal
• Client locks on Prompt()

• NotesAgent.runOnServer
• Redirects to server thread

• Client locks while agent runs

• Linear progress through server 
agent

• Redirects back to calling function 
and continues

5#engageug



XPages

• Single-threaded

• Linear

• NotesAgent.run()
• Redirects to LotusScript

• XPages waits

• Linear progress through server agent

• Redirects back to SSJS / Java

6#engageug



How to Improve Performance?

• But this is all synchronous code

• To improve performance we must:
• Use profiling to identify performance

• Choose better-performing APIs

• ViewNavigators

• ViewCollection.getFirstEntry() == null instead of 
ViewCollection.count()

• DQL instead of db.search()

• Or progress to asynchronous code…

7#engageug



Asynchronous in Domino

• Not possible in Formula Language

• Not possible in SSJS

• Agent.RunInBackgroundThread in LotusScript
• But like a Java Runnable, no UI interaction

• “Threads and Jobs” project on OpenNTF

• XOTS
• Runnables and Callables

• Imperative programming

8#engageug

https://openntf.org/main.nsf/project.xsp?r=project/Threads%20and%20Jobs
https://wiki.openntf.org/display/ODA/XOTS


Xots.getService().submit()

9#engageug



The Problems

• Responsible for submitting Future / Promise

• ExecutorService responsible for taking tasks off the queue

• get() method blocks while awaiting response(s) 

• Then code continues

• Gets messy when nested

10#engageug



Asynchronous in JavaScript

• First came callbacks…and “callback hell”

• Promises made popular by jQuery Deferred Objects
• Accepted into ECMAScript 2015 spec

• Nested / chained promises gets hard to read (as we’ll see)

• Async / await introduced in NodeJS 7.6
• Part of ECMAScript 2017 spec

• Built on Promises

• Async function = function that returns a Promise

• await expects a Promise and unwraps it

• Code looks synchronous, but runs asynchronous

11#engageug



Promise

12#engageug



Async / Await

13#engageug



What is Vert.x?

• Polyglot toolkit framework
• Java, JS, Groovy, Ruby, Scala, 

Kotlin

• Modular and Lightweight
• Vert.x core is 650kB

• Fast

• Flexible for everything from HTTP/REST microservices to 
sophisticated web applications

• Integrated into other frameworks, like Quarkus

14#engageug

https://www.techempower.com/benchmarks/#section=data-r17&hw=ph&test=db


15#engageug



Vert.x is Event Driven

• Vert.x is event driven and non blocking

• Vert.x is multi-threaded (like Domino but not like Node.JS)

• Means lots of concurrency with few threads

• Uses Event Loop with multiple threads (Multi-Reactor)
• Number of threads depends on CPU

• Blocking code offloaded to worker threads
• 20 threads by default

• Verticles are actors on threads

16#engageug



The Event Bus

• Communication between verticles via Event Bus

• One Event Bus per Vert.x instance

• Can be clustered across Vert.x instances

• Can allow JavaScript and Java verticles to communicate 
with one another

• Supports different messaging options:
• Publish/Subscribe

• Point-to-point messaging

• Request-response messaging

17#engageug



The Event Bus

• Messages sent to an address, e.g. 
“keep.request.fetchviews”

• Handlers are registered to listen for an address

• Messages can be:
• Strings

• Buffers

• JsonObjects (in-built JSON support built on Jackson)

• Any other object for which a codec is registered

• Message codecs have a name and define the class

18#engageug



Event Bus

19#engageug



Domino’s “Distributed Message Bus”

• Messages = email

• Sends message to an address

• Mail-in database receives email

• “After mail arrives” agent processes message

• However, no in-built communication back
• You could have a mail-in database at the other end as well

• “After mail arrives” finally sends email back

20#engageug



HTTP “Message Bus”

• Browser sends request

• Request has an address (URI)

• Sends a message (body + headers)

• Subscribes for response

• Receives response from server and processes it

21#engageug



22#engageug

So What?



ReactiveX

• Reactive eXtensions

• Asynchronous programming with observable streams

• Polyglot – RxJava, RxJS, RxGroovy, RxCpp, RxPY, 
RxSwift, RxScala

• RxJava 2 is latest Java version

• Combines Observer pattern, Iterator pattern and functional 
programming

23#engageug



24#engageug



Project Reactor

• Spring uses Project Reactor
• Java 8+

• Doesn’t have to support Android

• Directly interacts with Java functional API, Completable Future, 
Streams

• Based on joint reactive research effort also implemented by RxJava 2

• Started as Rx lite but now almost the same

25#engageug



Spring

26#engageug



What Does It Mean?

27#engageug

• Send request

• Request acknowledged

• Publish data

• Publish more data

• Complete



Give Us The Stats!

28#engageug

REST Method Worst Best Average

XAgent View AllEntries 1.971 secs 1.519 secs 1.6582 secs

XAgent ViewNavigator 1.562 secs 1.397 secs 1.4598 secs

LS Agent View All Entries 1.557 secs 1.325 secs 1.424 secs

LS Agent ViewNavigator 1.14 secs 1.274 secs 1.1908 secs

Project Keep API 0.641 secs 0.537 secs 0.6068 secs



Advantages

• Calling code can start work quicker

• Can perform additional processes
• Merge

• Order

• Filter

• Count

29#engageug



RxMarbles

30#engageug



What XPages / LS -> Postman Does

31#engageug



What Keep -> Postman Does

32#engageug



Thank You and Useful Links

• ReactiveX - various languages 

• RxJS Marbles - interactive reactive diagrams

• Going Reactive with Eclipse Vert.x and RxJava

• Vert.x and Reactive

• Reactive programming in Redux

• Development of Reactive Applications with Quarkus – Niklas
Heidloff

• Domino and Synchronous / Asynchronous Processing

• A Streaming Pattern for the Vert.x Event Bus

• Project Reactor

33#engageug

http://reactivex.io/
https://rxmarbles.com/
https://blogs.oracle.com/javamagazine/going-reactive-with-eclipse-vertx-and-rxjava
https://vertx.io/docs/#reactive
https://www.freecodecamp.org/news/an-introduction-to-functional-reactive-programming-in-redux-b0c14d097836/
http://heidloff.net/article-development-reactive-applications-quarkus/
https://www.intec.co.uk/what-domino-makes-trivial-number-two-synchronous-asynchronous-processing/
https://wissel.net/blog/2019/12/a-streaming-pattern-for-the-vert.x-eventbus.html
https://projectreactor.io/


Why No Comparison to App Dev Pack

34#engageug


